
Calculus Tricks #1 

Calculus is not a pre-requisite for this course. However, the foundations of economics are based on 
calculus, so what we’ll be discussing over the course of the semester is the intuition behind models 
constructed using calculus.

It’s not surprising therefore that the students who do better in economics courses are the ones who have a 
better understanding of calculus – even when calculus is not a required part of the course. So if you 
want to do well in this course, you should learn a little calculus. 

Many times throughout the course, we’ll be discussing marginalism – e.g. marginal cost, marginal 
revenue, marginal product of labor, marginal product of capital, marginal propensity to consume, 
marginal propensity to save, etc. 

Whenever you see “marginal …” it means “the derivative of …”  

A derivative is just a slope. So, for example, let’s say labor is used to produce output

if TP stands for Total Production (quantity produced),

if L stands for Labor input and

if  denotes a change,

then if I write: 
L

TP
 that’s the change in Total Production divided by the change in Labor.

It’s the slope of the total production function. 

It’s the derivative of the production function with respect to labor input. 

It’s the marginal product of labor (MPL). 

So if you understand derivatives, you’ll understand the course material much better. 

a few preliminaries – exponents 

You should recall from your high school algebra classes that 
when you see an exponent, it simply means multiply the 
number by itself the number of times indicated by the exponent.
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Now if you divide both sides of the above equation by x: 
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Similarly,    
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But what about 50x . ? That’s the square root of x : xx 50. .    Ex. 41616 50.

By the same logic as before: 
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a few preliminaries – functions

You may have seen something like this in your high school algebra classes: xf . This notation means 

that there is a function named “ f ” whose value depends on the value of the variable called “ x .”

Some examples of functions in economics include: 

The quantity of output that a firm produces depends on the amount of labor that it employs. In 
such a case, we can define a function called “ TP ” (which stands for Total Production) whose 

value depends on a variable called “ L ” (which stands for Labor). So we would write: LTP .

A firm’s total cost of producing output depends on the amount of output that it produces. In such a 
case, we can define a function called “ TC ” (which stands for Total Cost) whose value depends on 

a variable called “ Q ” (which stands for Quantity). So we would write: QTC .

A firm’s total revenue from selling output depends on the amount of output that it produces. In 
such a case, we can define a function called “ TR ” (which stands for Total Revenue) whose value 

depends on a variable called “ Q ” (which stands for Quantity). So we would write: QTR .

derivatives

Now let’s return to the original purpose of these notes – to show you how to take a derivative.

A derivative is the slope of a function. For those of you who saw xf  in your high school algebra classes, 

you may recall taking a derivative called “f-prime of x,” xf .

What you were doing was you were finding the slope of the function 

xf . You were finding how much the value of the function xf

changes as x  changes.

So let’s define the function: 2x3xf  and let’s look at how the 

value of xf  changes as we increase x  by one unit increments. 

Once again, let  denote a change. 

1815273
129122
6331
000

xf
true

x

xf
xfx

The third column is our rough measure of the slope. The fourth column – entitled xftrue  – is the true 

measure of the slope of xf  evaluated at each value of x . The values differ greatly between the two 

columns because we are looking at “large” changes in x  (in the third column) as opposed to the 
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infinitesimally small changes described in the notes entitled: “What’s the Difference between Marginal 
Cost and Average Cost?” (The infinitesimally small changes are listed in the fourth column). 

Why does it make a difference whether we look at small or large changes? Consider the following 

derivation of the slope of xf :

x3x6xf
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If we look at one unit changes in the value of x  – i.e. 1x  – then the slope of xf  evaluated at each 

value of x  is equal to x3x6  which equals 3x6  since 1x .

If we look at changes in x  that are so small that the changes are approximately zero – i.e.: 0x  – then 

the slope of xf  evaluated at each value of x  is approximately equal to x6  and gets closer and closer to 

x6  as the change in x  goes to zero. 

So if 2x3xf , then x6xf .

Since we’ll be looking at infinitesimally small changes in x , we’ll stop using the symbol  to denote a 
change and start using the letter d  to denote an infinitesimally small change. 

calculus tricks – an easy way to find derivatives 

For the purposes of this course, there are only a handful of calculus rules you’ll need to know: 
1. the constant-function rule 
2. the power-function rule, 
3. the sum-difference rule, 
4. the product-quotient rule and 
5. the chain rule. 

We’ll focus on the first three of these rules now.  
We’ll discuss the last two after we have a firm grasp  
on the first three.

the constant-function rule 

If 3xf , then the value of xf  doesn’t change x  as changes – i.e. xf  is constant and equal to 3.

So what’s the slope? Zero. Why? Because a change in the value of x  doesn’t change the value of xf .

In other words, the change the value of xf  is zero. So if 3xf , then 0xf
xd

xfd
.   
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the power-function rule 

Now if the value of x  in the function xf  is raised to a power (i.e. it has an exponent), then all we have 

to do to find the derivative is “roll the exponent over.” 

To roll the exponent over, multiply the original function by the original exponent and subtract one from 
the original exponent. For example: 
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xfd

x5xf
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the sum-difference rule 

Now, say the function you are considering contains the variable x  in two or more terms.  

5x3x2xk 2

if we define: 

5xhx3x3xgx2xf 12

then:

5x3x2

xhxgxfxk
2

Now we can just take the derivatives of xf , xg  and xh  and then add up the individual derivatives to 

find xk . After all, the change in a sum is equal to the sum of the changes.

3x40x31x22xk

xhxgxfxk

 xd

xhd

 xd

xgd

 xd

xfd

 xd

xkd

1112
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Example #1 – Total Revenue and Marginal Revenue 

Total Revenue, denoted TR , is a function of the quantity of output that a firm produces, denoted Q , and 

the price at which the firm sells its output, denoted p . Specifically, Total Revenue is equal to the amount 

of output that a firm sells times the price. For example, if the firm sells 20 widgets at a price of $5 each, 
then its Total Revenue is $100. 

If a firm is in a perfectly competitive market, then the firm cannot sell its output at a price higher than the 
one that prevails in the market (otherwise everyone would buy the products of competitor firms). So we 
can assume that the price is constant.

So what is a firm’s Marginal Revenue? It’s Marginal Revenue, denoted MR , is the derivative of Total 
Revenue with respect to a change in the quantity of output that the firm produces. 

p
Qd

QTRd
MRQpQTR

Example #2 – Total Product and Marginal Product of Labor 

If a firm produces output using “capital” – a fancy word for machinery – and labor, then the quantity of 
output that it produces – i.e. its Total Product, denoted by TP  – is a function of two variables: capital, 
denoted by K , and labor, denoted by L .

7030 LKLKTP ..
,

So what is the Marginal Product of Labor, denoted MPL ? Marginal Product of Labor is the change in 
Total Product caused by an increase in Labor input. Marginal Product of Labor is the derivative of Total 
Product with respect to Labor.

Notice that we’re looking solely at the change in Total Product that occurs when we vary the Labor input. 
We’re not changing the capital stock, so when we take the derivative of Total Product with respect to 
Labor, we’ll hold the firm’s capital stock is fixed – i.e. we’ll hold it constant.

30
30307030

L

K
70LK70

Ld

LK,TPd
MPLLKLKTP

.
....

..,

22



Homework #1C 

1. Find the derivative of each of the following functions:

a.
6x7xg

b.
1y3yk

c.
32q

2

3
qm

d.
w

c
bwawwh 2

e. 5zu

f. bmxxy

2. The Total Product of a firm, denoted by TP , depends on the amount of capital and labor that it 
employs. Denote capital by K  and denote labor by L .

The Total Product function is given by: 5050 LKLKTP ..
, .

Throughout this problem, assume that the firm’s capital stock is fixed at one unit.

a. Plot the Total Product function from zero units of Labor to four units of Labor.
(Hint: Use graph paper if you have it).

b. Now find the Marginal Product of Labor by taking the derivative of the Total Product function 
with respect to Labor.

c. Plot the Marginal Product of Labor from zero units of Labor to four units of Labor.

3. Plot each of the following functions. Then find the derivative of each function and plot the derivative 
directly underneath your plot of the original function.

a.
51xxf .

b.
50xxg .

If you plot the functions correctly, you will notice that the height of the plotted derivative is higher 
when the slope of the original function is steeper. Conversely, the height of the plotted derivative is 
lower when the slope of the original function is shallower.

4. The Total Cost function of a firm depends on the quantity of output that it produces, denoted by Q . 

The Total Cost function is given by:  6Q18Q6QQTC 23 .

a. Plot the Total Cost function from zero units of output to five units of output.
(Hint: Use graph paper if you have it).

b. Does the Total Cost function ever slope downward? Or is it everywhere increasing? 

c. Now find the Marginal Cost function by taking the derivative of the Total Cost function with 
respect to the quantity of output that the firm produces. 

d. Plot the Marginal Cost function from zero units of output to five units.

e. Does the Marginal Cost function ever slope downward? Or is it everywhere increasing?

f. If the Total Cost function never slopes downward, then why does the Marginal Cost function 
slope downward over some ranges of output? 
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Calculus Tricks #2 

This set of calculus tricks explains the chain rule and the product-quotient rule. For the purposes of this 
course, our only need for these rules will be to show that: 

The percentage change in a product of two variables is equal to the sum of the percentage changes 
in each of the two variables. 

The percentage change in the ratio of two variables is equal to the percentage change in the 
numerator minus the percentage change in the denominator. 

For example, if we’re interested in the percentage change in Total Revenue, i.e. QpTR , then: 

Q

Q

p

p

Qp

Qp

TR

TR

To take another example, if we’re interested in the percentage change in GDP per capita, i.e. NGDP

(where N  denotes population), then: 

N

N

GDP

GDP

NGDP

NGDP

capitaperGDP

capitaperGDP

the chain rule 

Say you are considering a function that is a function of a function. That is: 

xgfxh

In other words, the value of xh  changes as the function named “ f ” changes and the function named 

“ f ” changes as the function xg  changes. 

To analyze this change, we can analyze a chain of causality that runs from x  to xh .

xhxgfxgx

So the derivative of xh  with respect to x  is:

 xd

xgd

xgd

xfd

 xd

xhd

which looks like the chain of causality flipped around: 

xxgxgfxh

So for example, if 1x3xg  and if 2xgxgf , then 21x3xh .

So there are two ways to take the derivative of xh  with respect to x . Using the methods you already 

learned, you could expand the terms in the function xh :

1x6x91x3xh 22
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and then take the derivative of xh with respect to x , so that:

6x18
xd

xhd
xh

Expanding the terms of 21x3  can be rather tedious when you’re working with a complicated function. 

Fortunately, the chain rule enables us to arrive at the same result, but in a somewhat quicker fashion: 

6x18

1x36

3xg2

xgxgfxh

3xg1x3xg

xg2xgfxgxgf 2

which yields exactly the same result as the one above. 

the product-quotient rule 

Say you are considering a function that is the product of two functions, each of which is a function of the 
variable x . That is: 

xgxfxh

If we knew the explicit functional forms of xf  and xg , then we could multiply xf  by xg  and take 

the derivative of xh  with respect to x  using the rules you already know. For example,  

if x3xf   and 2xxg ,    then
3

2

x3

xx3

xgxfxh

   and 2
9xxh

xd

xhd

But we can also consider the change in xh  as xf  changes holding xg  constant and the change in 

xh  as xg  changes holding xf  constant.

In other words: xf
xd

xgd
xg

 xd

xfd

 xd

xhd
  or  xfxgxgxfxh

Using the previous case where x3xf  and 2xxg , we can write:

2

22

2

x9

x6x3

x3x2x3

xfxgxgxfxh

which yields exactly the same result as the one above. 
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Now let’s say you are considering a function that is a ratio of two functions, each of which is a function of 
the variable x . That is: 

xg

xf
xh  which can be rewritten as:  1xgxfxh

To find the derivative of xh  with respect to x , we can perform the exact same analysis as we did in the 

previous example, but with the twist that we also have to use the chain rule on the term 1xg .

If we define a function xk  which is identically equal to 1xg , i.e. 1xgxk , then we can 

rewrite the function xh  as: 

xkxfxh

The derivative of xh  with respect to x  is: 

xfxkxkxfxh

 And the derivative of xk  with respect to x  is: 

2

2

1

xg

xg
xgxg1xk

 xd

xgd

xgd

xgd

 xd

xkd

Plugging that into the derivative of xh  with respect to x :

2

2

1

xg

xfxg

xg

xf
xh

xf
xg

xg
xgxfxh

So let’s consider: 
xg

xf
xh , where 24 x2x6xf  and x2xg . In such a case, xx3xh 3

and 1x9
2xh . To illustrate the rule we just derived, let’s use the rule to obtain the same result: 

1x9
21x32x12xh

x2

x2x62

x2

x4x24
xh

xg

xfxg

xg

xf
xh

2xgx2xg

x4x24xfx2x6xf

22

2

243

2

32
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Now, let’s return to the original purpose of this set of Calculus Tricks, i.e. to show that: 

The percentage change in a product of two variables is equal to the sum of the percentage changes 
in each of the two variables. 

The percentage change in the ratio of two variables is equal to the percentage change in the 
numerator minus the percentage change in the denominator. 

Example #1 – a percentage change in Total Revenue 

Once again Total Revenue is given by QpTR . Let’s assume now that the price of output and the 

quantity of output produced evolve over time, so that tpp  and tQQ , where “ t ” represents time. 

In such a case Total Revenue would also evolve over time tTRTR .

So what’s the percentage change in Total Revenue over time? First, we need to find the changes: 

tQtptQtptRT

 td

tQd
tptQ

 td

tpd

 td

tQtpd

 td

tTRd

Since we’re interested in a percentage change, we need to divide both sides by Total Revenue to get the 
percentage change in Total Revenue: 

quantity
%

price
%

tQ

tQ

tp

tp
TR
%

tQtp

tQtp

tQtp

tQtp

tTR

tRT

a note on time derivatives 

When working with dynamic changes – that is: a change over time – economists usually denote a time 
derivative by placing a dot over the variable. I will frequently use this notation.  

So for example, the derivative of price with 
respect to time would be denoted by p

ptp
 td

tpd

and the derivative of quantity with respect to 

time would be denoted by Q

QtQ
td

tQd

(continued on the next page) 
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Example #2 – a percentage change in the Capital-Labor ratio 

The Capital-Labor ratio – denoted: k  – is defined as: 
L

K
k , where K  and L  denotes capital and labor 

respectively. 

Suppose that these two variables evolve over time so that: tKK  and tLL . This implies that the 

Capital-Labor ratio also evolves over time, so tkk .

To avoid clutter, I’ll drop the “ t ” from the functional notations. 

So how does the Capital-Labor ratio evolve over time? 

L

L

K

K

L

K

L

L
K

L

K

 td

Ld

Ld

Ld
K

 td

Kd
Lk

LK
 td

d

 td

kd

2

1
1

1

Since
L

K
k , the derivation above implies that:  

L

L

K

K

k

k

The percentage change in the Capital-Labor ratio over time is equal to the percentage change in Capital 
over time minus the percentage change in Labor over time. 
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Some students have told me that they understand the product-quotient rule better when I explain the rules 
using difference equations. 

Example #1 revisited – a percentage change in Total Revenue 

Since Total Revenue is given by: QpTR , the percentage change in Total Revenue is: 

11

1122

Qp

QpQp

Qp

Qp

TR

TR
    where:

quantitynew theisQpricenew theisp

quantityinital theisQpriceinital theisp

22

11

Next, we’re going to add a zero to the equation above. Adding zero leaves the value of the percentage 
change in Total Revenue unchanged.  

We’re going to add that zero in an unusual manner. The zero that we’re going to add is: 

11

2121

Qp

QpQp
0

Adding our “unusual zero” yields: 

11

2121

11

1122

Qp

QpQp

Qp

QpQp

TR

TR

Rearranging terms, we get: 

11

121

11

212

Qp

QQp

Qp

Qpp

TR

TR

Now notice that: 12 ppp   and 12 QQQ , therefore: 

11

2

1 Q

Q

Q

Q

p

p

TR

TR

Since we’re considering very small changes: 0Q , which implies that: 12 QQ  and 1
Q

Q

1

2 .

Therefore we can write: 

Q

Q

p

p

TR

TR
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Example #2 revisited – a percentage change in the Capital-Labor ratio 

Once again, define k  as the Capital-Labor ratio, i.e.:  
L

K
k , where K  denote capital and L  denotes 

labor. The percentage change in the Capital-Labor ratio is: 

11

1

1

2

2

LK

L

K

L

K

LK

LK

k

k
    where:

forcelabornew theisLstockcapitalnew theisK

forcelaborinital theisLstockcapitalinital theisK

22

11

Once again, we’re going to add an “unusual zero.” 

11

2

1

2

1

LK

L

K

L

K

0

Adding our “unusual zero” yields: 

11

2

1

2

1

11

1

1

2

2

LK

L

K

L

K

LK

L

K

L

K

LK

LK

Rearranging terms, we get: 

22

1

1

2

21

2

1

1

2

1

2

1

1

1

1

1

1

2

1

2

1

1

12

1

1

1

1

2

1

1

1

2

1

2

2

11

1

1

2

1

11

2

1

2

2

L

L

L

L

K

K

L

LL

L

L

K

K

1
L

L

L

L

K

K

K

K

L

L

L

L

L

L

K

KK

K

L

L

K

L

K

K

L

L

K

L

K

LK

L

K

L

K

LK

L

K

L

K

LK

LK

The derivation above uses the definitions: 12 KKK   and 12 LLL .

Since we’re considering very small changes: 0L , which implies that: 12 LL  and 1
L

L

2

1 .

Therefore we can write: 

L

L

K

K

LK

LK

2

2

L

L
1: thatnote
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Homework #1D 

1. Let tY  denote output as a function of time and let tL  denote the labor force as a function of time. 

a. What is the ratio of output per worker?

b. How does it evolve over time?

2. Let tY  denote output as a function of time, let tL  denote the labor force as a function of time and 

let tA  denote a level labor efficiency, so that tLtA  is the “effective labor force.”  

a. What is the ratio of output per unit of effective labor?

b. How does it evolve over time?

3. Let tK  denote the capital stock as a function of time, let tL  denote the labor force as a function of 

time and let tA  denote a level labor efficiency, so that tLtA  is the “effective labor force.”  

 Let tk
~

 denote the ratio of capital to effective labor.  

a. What is the ratio of capital per unit of effective labor?

b. How does it evolve over time?

c. Find the derivative: 
 td

tk
~

d
.  Hint: Use the chain rule. It makes life a lot easier.
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Notes on Logarithms 

 
When I initially designed this course, I did not plan to teach you how to use logarithms. Van den Berg’s 
textbook however assumes that you understand logarithms, so I’ve written these notes to enable you to 
better understand the equations in his text. 
 
Logarithms start with a given base number. The base number can be any real number. The simplest base 
to use is 10, but the preferred base is the irrational number: ...71828.2e = . These notes explain the basic 
idea of logarithms using the base number 10. Then once you’ve grasped the basic idea behind logarithms, 
these notes will introduce the preferred base. 
 
Now that we’ve temporarily chosen a base of 10, let’s pick another 
number, say: 1000. The basic idea of logarithms is to answer the 
question: “10 raised to what power will equals 1000?” The answer 
of course is: “10 raised to the third power equals 1000.” That is: 

1000103 = . Mathematically, we say: “The logarithm of 1000 to 
the base of 10 equals 3.” That is: 31000log10 = . 
 
Now let’s pick another number, say: 0.01 and once again ask: “10 
raised to what power will equals 0.01?” The answer this time is: 
“10 raised to the power –2 equals 0.01.” That is: 01.010 2 =− . 
Mathematically, we say: “The logarithm of 0.01 to the base of 10 
equals –2.” That is: 201.0log10 −= . 

3001.0log001.010
201.0log01.010
11.0log1.010

01log110
110log1010
2100log10010
31000log100010

10
3

10
2

10
1

10
0

10
1

10
2

10
3

−==
−==
−==

==
==
==
==

−

−

−

 

 
This relationship is summarized in the table above and is depicted in the graphs below. 
 

  
 
It should also be intuitively clear that if we had chosen a different base number, say: 4, then we could ask 
the question: “4 raised to what power equals 16?” The answer this time is: “4 raised to the second power 
equals 16.” That is: 1642 = . Mathematically, we say: “The logarithm of 16 to the base of 4 equals 2.” 
That is: 216log4 = . 
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Logarithms are useful because they 
allow us to perform the mathematical 
operations of multiplication and 
division using the simpler operations 
of addition and subtraction. 
 
For example, you already know that: 

842 =× , so look at the logarithmic 
scales at left and observe that: 
 

90309.08log
60206.04log
30103.02log

10

10
10

++  

 

Similarly, you know that: 5
8
40

= . 

Looking again at the logarithmic 
scales, you can see that: 
 

69897.05log
90309.08log
60206.140log

10

10
10

−−  

 
In fact, before technology enabled us 
all to carry a calculator our pocket, 
people performed multiplication and 
division using slide rules that had 
base 10 logarithmic scales. 
 
So why does this “trick” work? To 
answer this question, first recall that: 
 

000,1001000100
101010 532

=⋅
=⋅  

 

1.0
1000
100

101010 132

=

=⋅ −−

 

 
So the “trick” works because the 
numerical value of a logarithm is an 
exponent and because you can add 
(or subtract) exponents in a 
multiplication problem (or division 
problem) so long as the exponents 
are the powers of a common base 
number.  
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On the previous page, we established two rules of logarithms: 
 

( )
blogalog

b
alog:II Rule
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We can use Rule I to establish yet another rule: 
 

( ) alogcalog:III Rule 10
c

10 ⋅=  
 
For example: 44443 ⋅⋅= , therefore:  
 

( ) ( )

4log3
4log4log4log

444log4log
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Of course, the rules above apply to logarithms to all bases. After all, the numerical value of a logarithm 
is just an exponent and an exponent can be attached to any base number.  
 
We’ve been working with logarithms to the base of 10, but in analytical work the preferred base is the 
irrational number: ...71828.2e = . Logarithms to the base of e  are called natural logarithms 
(abbreviated “ln”): aln aloge ≡ . The rules of natural logarithms are the same as the ones derived above: 
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( ) aln caln :III Rule

bln aln 
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♦ ♦ ♦ 

 
pitfalls to avoid 

 
Finally, there are two pitfalls to avoid. 
 
First, observe from Rule I that ( )baln +  is NOT equal to bln aln + . Similarly, Rule II tells us that 
( )baln −  is NOT equal to bln aln − . 

 
Second, logarithms of non-positive numbers are undefined. For example, in the graphs on the first page, 
we used the equation t10y =  to obtain the relationship ylogt 10= . Therefore if 0y = , then the value of 
t  must be negative infinity.  
 
So what would the value of t  be if y  were a negative number? … That’s a trick question. If y  were a 
negative number, then t  could not possibly be a real number. For this reason, logarithms of negative 
numbers are undefined. 
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